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A quick and efficient, one-pot synthesis of dithiocarbazates was accomplished in high yields by reaction
of various alkyl halides with substituted hydrazines using Amberlite IRA 400 (basic resin)/CS2 system.
The reaction conditions are mild with extremely simple work-up procedures than the reported methods.
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1. Introduction

Organic dithiocarbazates have received much attention due to their numerous remarkable
medicinal, industrial, and synthetic applications (1, 2). They have extensively been used as phar-
maceuticals (3–6), agrochemicals (7–10), intermediates in organic synthesis (11–13), protection
of amino groups in peptide synthesis (14–17), linkers in solid phase organic synthesis (18, 19),
and as donor ligands in complexation reactions with transition metals (20–22). To satisfy the
demand, their synthesis has been changed from the use of costly and toxic chemicals such as thio-
phosgene (23) and its derivatives (24, 25) directly or indirectly, to the abundantly available cheap
and safe reagents like CS2. Moreover, their formation using CS2 employed harsh reaction con-
ditions using strong bases, high reaction temperatures, and longer reaction times (26, 27). Thus,
we were prompted to embark on the improved procedures. Our group (28–40) has been engaged
for several years in the development of new methodologies for the preparation of carbamates,
dithiocarbamates, and related compounds using cheap, abundantly available, and safe reagents
like CO2 and CS2, respectively. More recently (41–47), we found that Amberlite IRA 400 (basic
resin) is the best reagent for the synthesis of carbamates, dithiocarbamates, and dithiocarbonates
(xanthates). Furthermore, use of basic resin has also been reported (48) for the tetrahydropyrany-
lation of alcohols and phenols. In the present communication, we report herein efficient, one-pot,
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synthesis of dithiocarbazates from a variety of primary, secondary, and tertiary alkyl halides and
substituted hydrazines using basic resin/CS2 system.

2. Results and discussion

In connection with our ongoing interest pertaining to the use of Amberlite IRA 400 (basic resin)
for the synthesis of carbamates, dithiocarbamates, and dithiocarbonates (xanthates) (41–47), we
now wish to report a simple and effective one-pot procedure for the preparation of dithiocarbazates
from a variety of primary, secondary, and tertiary alkyl halides and substituted hydrazines employ-
ing basic resin/CS2 system. Thus, a mixture of substituted hydrazine and CS2 in dry dimethyl
sulfoxide (DMSO) and Amberlite IRA 400 (basic resin) was added. The reaction was stirred for
30 min at room temperature and then corresponding alkyl halide was added. Reaction was further
continued until the completion of the starting materials checked by thin layer chromatography
(TLC) (Table 1). It is proposed that the S− of the dithiocarbazate ion produced will attack to the
electrophilic carbon of the respective alkyl halide to afford dithiocarbazates in high yields (78–
98%) at room temperature in 2–4 h, as mentioned in Table 1. The reaction proved to be successful
and the desired products isolated and further confirmed by various spectroscopic and analytical
techniques. Since the products were simply obtained by concentration of organic layer in vacuo
after filtration of basic resin from the reaction mixture which indicates the novelty of the method
among the reported procedures. Reactions have also been tried without using Amberlite resin, but
no products could be observed, indicates the necessity of basic resin in caring out the reaction.
The whole reaction conditions are shown in Scheme 1.

Table 1. Conversion of various alkyl halides into dithiocarbazates of general formula I.

Entry R1 R2 R3 X R Time (h) Isolated yield (%)

1 n-C3H7 H H Br 4-MeO-Ph 2 92
2 PhCH2CH2 H H Br Ph 2 95
3 PhCH2 H H Cl Ph 2.5 85
4 Ph H H Cl Bn 3 90
5 C2H5 Me H Br Bn 3 88
6 4-MeO·Ph H H Cl 3-NO2·Ph 3 83
7 C3H7 H H Br 4-NO2·Ph 3 84
8 C3H7 H H Br 2,4-NO2·Ph 4 78
9 C3H7 H H Br Naphthyl 3 83

10 C4H9 C4H9 H Br Ph 3 89
11 C4H9 C4H9 C4H9 Br Ph 3 87
12 C5H11 H H Cl Bn 2.5 94
13 C7H15 H H Cl Ph 2.5 92
14 C9H19 H H Cl Bn 2 98
15 C3H7 C3H7 H Br Ph. 3 85
16 Ph CH3 H Br Ph 3.5 82

Note: All products were characterized by IR, NMR and ms.

Scheme 1. Reagents and conditions: (a) Amberlite IRA 400, CS2, dry DMSO, rt, 2–4 h.
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Thus, we screened various solvents like n-heptane, n-hexane, acetonitrile, benzene, toluene,
methanol, dichloromethane, chloroform, DMSO, dimethylformamide, hexamethylphosphoric
triamide of which dry DMSO proved to be most suitable at room temperature.

In conclusion, we have developed a convenient and efficient protocol for one-pot, three com-
ponent coupling of various hydrazines with a variety of primary, secondary, and tert. alkyl halides
via CS2 bridge using basic resin (Amberlite IRA 400). This method generates the corresponding
dithiocarbazates in good to excellent yields. Furthermore, this method exhibits substrate versa-
tility, mild reaction conditions, and experimental convenience. This synthetic protocol developed
in our laboratory is believed to offer a general method for the formation of carbon-sulfur bonds
essential to various organic syntheses.

3. Experimental

Chemicals were purchased from Merck, Aldrich, and Fluka. Amberlite IRA 400 (basic resin)
was also acquired from Merck. Reactions were carried out under an atmosphere of nitrogen. IR
spectra (4000–200 cm−1) were recorded on Bomem MB-104–FTIR spectrophotometer where as
NMR was obtained using a AC-300F, NMR (300 MHz), instrument using CDCl3 and some other
deutrated solvents and tetramethyl silane (TMS) as internal standard. Elemental analysis were
obtained by Carlo-Erba EA 1110-CNNO-S analyzer.

3.1. Typical experimental procedure

To a stirred solution of substituted hydrazine (3 mmol) in anhydrous DMSO (5 mL) was slowly
added, carbon disulfide (8 mmol) and basic resin (5 mmol) at room temperature. The mixture was
then stirred for 0.5 h at which point the required alkyl halide (3 mmol) was added over a period
of 5 min. The reaction mixture was further continued until the completion of reaction (Table 1)
under an argon atmosphere. The reaction mixture was filtered to remove resin. The filtrate was
poured into water (20 mL) and organic layer was extracted with EtOAc (3 × 10 mL). The organic
layer was washed with 0.1 N HCl (20 mL), saturated solution of sodium bicarbonate (25 mL),
brine (30 mL), and dried (Na2SO4) and concentrated to afford desired compound.

3.2. Data for Dithiocarbazates

Butyl 2-(4-methoxyphenyl)hydrazinecarbodithiolate (1)

IR v̈(cm−1) = 675, 1210; 1H NMR (CDCl3) δ = 0.85 (t, 3H, J = 7.3 Hz), 1.33(m, 2H), 1.85(m,
2H), 2.0 (s, NH), 2.95 (t, 2H, J = 6.3 Hz), 3.73 (s, 3H), 4.05(m, NH), 6.75–7.60(m, 4H); 13C
NMR (CDCl3) δ = 13.5, 21.8, 32.4, 33.9, 43.7, 55.6, 112.5, 114.9, 134.5, 152.4, 222.5 (C= S)

ppm; MS (EI): m/z = 270; analysis: C12H18N2OS2, Calcd: C, 53.30; H, 6.71; N, 10.36; S, 23.72;
Obsd: C, 53.24; H, 6.65; N, 10.33; S, 23.58.

3-Phenylpropyl 2-phenylhydrazinecarbodithiolate (2)

IR v̈(cm−1) = 676, 1205; H1 NMR (CDCl3) δ = 2.05 (s, NH), 2.30 (m, 2H, PhCH2CH2CH2-S)),
2.56 (t, 2H, J = 7.2 Hz, PhCH2), 2.87 (t, 2H, PhCH2CH2CH2S), 4.03 (m, H, PhNH), 6.66–7.12
(m, 10H,Ar-H); 13C NMR (CDCl3) δ = 32.2, 33.6, 34.4, 112.5, 119.2, 125.8, 128.6, 129.5, 138.6,
221.6 (C= S) ppm; MS: m/z = 302; analysis: C16H18N2S2, Calcd: C, 63.54; H, 6.00; N, 9.26; S,
21.20; Obsd: C, 63.35; H, 6.26; N, 9.17; S, 21.28.
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2-Phenylethyl 2-phenylhydrazine carbodithiolate (3)

IR v̈(cm−1) = 673, 1203; H1 NMR (CDCl3) δ = 2.10 (s, H, NH), 3.20 (2H, t, J = 6.5, Hz,
PhCH2CH2S), 3.24 (m, 2H, J = 7.2 Hz, PhCH2), 4.52 (m, H, PhNH), 6.69–7.15 (m, 10H, Ar-
H); 13C NMR (CDCl3) δ = 34.5, 37.3, 47.2, 49.9, 118.6, 192.7, 223.3 (C= S) ppm; MS: m/z =
288; analysis: C15H16N2S2, Calcd: C, 62.46; H, 5.59; N, 9.71; S, 22.23; Obsd: C, 62.70; H, 6.64;
N, 9.59; S, 22.10.

Benzyl 2-butylhydrazinecarbodithiolate (4)

IR v̈(cm−1) = 676, 1207; H1 NMR (CDCl3) δ = 1.05 (t, 3H, CH3), 1.33 (m, 2H, CH2CH3), 1.56
(m, 2H, CH2CH2CH3), 2.05 (br, NH), 2.65 (m, 2H, NHCH2), 4.13 (s, 2H, PhCH2), 7.06–7.15
(m, 5H, Ar-H); 13C NMR (CDCl3), δ = 13.7, 20.2, 31.5, 38.5, 50.9, 126.8, 127.6, 128.5, 141.8,
223.5 ppm; MS: m/z = 254; analysis: C12H18N2S2, Calcd: C, 56.65; H, 7.13; N, 11.01; S, 25.21;
Obsd: C, 56.46; H, 7.35; N, 11.27; S, 25.12.

sec-Butyl 2-butylhydrazinecarbodithiolate (5)

IR v̈(cm−1) = 682, 1214; H1 NMR (CDCl3) δ = 0.99 (t, 3H, CH3), 1.05 (t, 3H, CH3), 1.35 (m,
2H, CH2CH3), 1.41 (d, 3H, CHCH3), 1.55 (m, 2H, CH3CH2CH2), 1.96 (m, 2H, CHCH2), 2.0
(br, H, NH), 2.65 (m, 2H, NHCH2), 2.70 (m, CH-S), 13C NMR (CDCl3) δ = 10.2, 13.7, 20.2,
21.5, 31.2, 32.3, 40.1, 49.9, 223.4 ppm; MS: m/z = 220; analysis: C9H20N2S2, Calcd: C,49.05;
H, 9.15; N, 12.71; S, 29.10; Obsd: C, 49.33; H, 9.01; N, 12.75; S, 29.32.

4-Methoxybenzyl 2-(3-nitrophenyl)hydrazinecarbodithiolate (6)

IR v̈(cm−1) = 678, 1211; H1 NMR (CDCl3) δ = 2.05 (br, H, NHPhOMe), 3.73 (s, 3H, OCH3),
4.06 (br, H, NHPhNO2), 6.65–7.66 (m, 8H, Ar-H); 13C NMR (CDCl3) δ = 38.3, 56.7, 107.5,
114.6, 118.4, 128.5, 129.9, 133.6, 143.6, 148.7, 160.6, 223.2 ppm; MS: m/z = 349; analysis:
C15H15N3O3S2, Calcd: C, 51.56; H, 4.33; N, 12.03; S, 18.35; Obsd: C, 51.23; H, 4.50; N, 12.24;
S, 18.03.

Butyl 2-(4-nitrophenyl)hydrazinecarbodithiolate (7)

IR v̈(cm−1) = 666, 1203; H1 NMR (CDCl3) δ = 0.96 (t, 3H, CH3), 1.33 (m, 2H, CH2CH3), 1.96
(m, 2H, SCH2CH2), 2.05 (br, H, NH), 2.87 (t, 2H, SCH2), 4.04 (br, NHArNO2), 6.92–8.15 (m,
4H, Ar-H); 13C NMR (CDCl3) δ = 13.7, 21.6, 32.2, 33.7, 113.5, 124.6, 138.8, 143.3, 223.5 ppm;
MS: m/z = 285; analysis: C11H15N3O2S2,Calcd: C, 46.29; H, 5.30; N, 14.72; S, 22.47; Obsd: C,
46.45; H, 5.17; N, 14.47; S, 22.21.

Butyl 2-(2,4-dinitrophenyl)hydrazinecarbodithiolate (8)

IR v̈(cm−1) = 670, 1212; H1 NMR (CDCl3) δ = 0.94 (t, 3H, CH3), 1.32 (m, 2H, CH2CH3), 1.95
(m, 2H, SCH2.CH2), 2.02 (br, H, NH), 2.83 (t, 2H, SCH2), 4.04 (br, N, NHArNO2), 7.19–9.50
(m, 3H, Ar-H); 13C NMR (CDCl3) δ = 13.8, 21.9, 32.3, 33.8, 113.6, 119.2, 130.2, 132.8, 139.7,
143.3, 222.5 ppm; MS: m/z = 330; analysis: C11H14N4O4S2, Calcd: C, 39.99; H, 4.27; N, 16.96;
S, 19.41; Obsd: C, 40.22; H, 4.05; N, 16.76, S, 19.50.
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Butyl 2-(naphth-2-yl) hydrazinecarbodithiolate (9)

IR v̈(cm−1) = 677, 1209; 1H NMR (CDCl3) δ = 0.95 (t, 3H, CH3), 1.33 (m, 2H, CH2CH3), 1.97
(m, 2H, SCH2.CH2), 2.05 (br, H, NH), 2.84 (t, 2H, SCH2), 4.05 (br, NHArNO2), 6.76–7.55 (m,
7H, Ar-H); 13C NMR (CDCl3) δ = 13.9, 22.1, 32.5, 33.9, 107.4, 117.2, 121.3, 124.5, 126.6, 127.2,
133.5, 142.6, 224.1 ppm; MS: m/z = 290; analysis: C15H18N2S2, Calcd: C, 62.03; H, 6.25; N,
9.64; S, 22.08; Obsd: C, 62.44; H, 6.33; N, 9.53; S, 22.25.

1-Butylpentyl 2-phenylhydrazinecarbodithiolate (10)

IR v̈(cm−1) = 677, 1212; 1H NMR (CDCl3) δ = 0.96 (t, 6H, CH3), 1.29 (m, 4H, CH2CH2CH),
1.33 (m, 4H, CH2CH3), 1.92 (m, 4H, CHCH2), 2.05 (br, NH), 2.52 (t, H, SCH), 4.05 (br, H,
NHAr), 6.66–7.18 (m, 5H, Ar-H); 13C NMR (CDCl3) δ = 14.2, 23.1, 28.5, 36.2, 41.4, 112.2,
119.3, 129.0, 142.4, 223.3 ppm; MS: m/z = 310; analysis: C16H26N2S2, Calcd: C, 61.89; H,
8.44; N, 9.02; S, 20.65; Obsd: C, 61.77; H, 8.54; N, 9.22; S, 20.46.

1,1-Dibutylpentyl 2-phenylhydrazinecarbodithiolate (11)

IR v̈(cm−1) = 669, 1210; 1H NMR (CDCl3) δ = 0.96 (t, 6H, CH3), 1.29 (m, 4H, CH2CH2C),
1.33 (m, 4H, CH2CH3), 1.88 (m, 4H, CHCH2), 2.04 (br, H, NH), 4.0 (br, H, NH-Ar), 6.67–7.19
(m, 5H, Ar-H); 13C NMR (CDCl3) δ = 14.1, 23.4, 26.7, 39.6, 41.1, 112.5, 119.3, 129.6, 142.2,
223.5 ppm; MS: m/z = 366; analysis: C20H34N2S2, Calcd: C, 65.52; H, 9.35; N, 7.64; S, 17.49;
Obsd: C, 65.27; H, 9.11; N, 7.44; S, 17.49.

Hexyl 2-butylhydrazinecarbodithiolate (12)

IR v̈(cm−1) = 674, 1208; 1H NMR (CDCl3) δ = 0.96 (t, 6H, CH3), 1.29 (m, 4H,
CH2CH2CH2CH3), 1.33 (t, 2H, CH2CH3), 1.55 (m, 2H, NHCH2CH2), 1.96 (m, 2H, SCH2CH2),
2.0 (br, 2H, NH), 2.65 (t, 2H, NHCH2), 2.87 (t, 2H, SCH2), 13C NMR (CDCl3) δ = 13.7, 14.1,
20.2, 23.1, 28.6, 31.5, 32.6, 49.9, 223.1 ppm; MS: m/z = 248; analysis: C11H24N2S2, Calcd: C,
53.18; H, 9.74; N, 11.28; S, 25.81; Obsd: C, 53.33; H, 9.54; N, 11.39; S, 25.64.

n-Octyl 2-phenylhydrazinecarbodithiolate (13)

IR v̈(cm−1) = 679, 1211; 1H NMR (CDCl3) δ = 0.96 (t, 3H, CH3), 1.29 (m, 8H, CH2), 1.33
(m, 2H, CH2CH3), 1.96 (m, 2H, SCH2CH2), 2.0 (br, H, NH), 2.88 (t, 2H, SCH2), 4.0 (br, H,
Ph.NH), 6.65–7.20 (m, 5H, Ar-H), 13C NMR (CDCl3) δ = 14.5, 23.10, 28.9, 30.5, 31.5, 32.5,
112.2, 129.6, 118.9, 142.2, 223.6 ppm; MS: m/z = 296; analysis: C15H24N2S2, Calcd: C, 60.76;
H, 8.16; N, 9.45; S, 21.63; Obsd: 60.55; H, 8.33 N, 9.30; S, 21.77.

Decyl 2-butylhydrazinecarbodithiolate (14)

IR v̈(cm−1) = 673, 1220; 1H NMR (CDCl3), δ = 0.97 (s, 3H, CH3), 0.99 (s, 3H, CH3), 1.29
(m, 12H, CH2), 1.34 (m, 4H, CH2CH3), 1.55 (m, 2H, CH2CH2CH3), 1.96 (m, 2H, SCH2CH2),
2.0 (br, 2H, NH.NH), 2.65 (m, 2H, NHCH2), 2.87 (t, 2H, SCH2), 13C NMR (CDCl3) δ = 13.7,
14.5, 20.3, 23.1, 28.9, 30.6, 30.9, 31.5, 32.5, 222.1 ppm; MS: m/z = 304; analysis: C15H32N2S2,
Calcd: C, 59.15; H, 10.59; N, 9.20; S, 21.06; Obsd: C, 59.30; H, 10.34; N, 9.21; S, 21.24.
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1-Propylbutyl 2-phenylhydrazinecarbodithiolate (15)

IR v̈(cm−1) = 675, 1210; 1H NMR (CDCl3) δ = 0.97 (s, 3H, CH3), 1.33 (m, 4H, CH2CH3), 1.92
(m, 4H, CHCH2), 2.0 (br, H, NH), 2.52 (m, H, CH -S), 4.1 (br, H, NH-Ar), 6.66–7.22 (m, 5H,
Ar-H); 13C NMR (CDCl3) δ = 14.5, 20.1, 38.4, 40.8, 112.5, 118.3, 129.6, 143.3, 222.1 ppm; MS:
m/z = 282; analysis: C14H22N2S2, Calcd: C, 59.53; H, 7.85; N, 9.92; S, 22.70; Obsd: C, 59.75;
H, 7.66; N, 9.92; S, 22.44.

1-Phenylethyl 2-phenylhydrazinecarbodithiolate (16)

IR v̈(cm−1) = 678, 1210; 1H NMR (CDCl3) δ = 1.69 (d, 3H, CH3), 2.2(br, H, NH), 3.98 (m, H,
CH-S), 4.2 (br, H, NH-Ar), 6.66–7.22 (m, 10H, Ar-H), 13C NMR (CDCl3) δ = 23.4, 41.1, 112.5,
118.9, 126.5, 128.5, 129.7, 141.3, 142.5, 222.1 ppm; MS: m/z = 288; analysis: C15H16N2S2,
Calcd: C, 62.46; H, 5.59; N, 9.71; S, 22.23; Obsd: C, 62.33; H, 5.46; N, 9.99; S, 22.36.
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